

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/cx-docs/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/cx-docs/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 This document is to serve as the standard coding convention reference for Cx.
At any time you come across anything undocumented, just be aware of what the
already existing code looks like and follow it’s format.

In the event you find code not following the standard, please fix it if it
will not cause much of an issue. If the non-standard code requires much work,
submit an issue and someone will help correct it.

BASICS

Limit lines to 79 characters.

Use form feeds (control+L) to divide long source files into logical
pieces. A form feed should appear as the only character on a line.

Do not use tabs for indentation.

Avoid trailing spaces on lines.

NAMING - needs to be done.

Use names that explain the purpose of a function or object.

Use underscores to separate words in an identifier: multi_word_name.

Use lowercase for most names. Use uppercase for macros, macro
parameters, and members of enumerations.

Give arrays names that are plural.

Pick a unique name prefix (ending with an underscore) for each
module, and apply that prefix to all of that module’s externally
visible names. Names of macro parameters, struct and union members,
and parameters in function prototypes are not considered externally
visible for this purpose.

Do not use names that begin with _. If you need a name for
“internal use only”, use __ as a suffix instead of a prefix.

Avoid negative names: “found” is a better name than “not_found”.

In names, a “size” is a count of bytes, a “length” is a count of
characters. A buffer has size, but a string has length. The length
of a string does not include the null terminator, but the size of the
buffer that contains the string does.

Comments:
single line comments should only use C++ one line comments.
comment blocks should use C style comments to denote that these comments
are grouped.

 // single liner not documented

 /* we have lots to talk about
 * here so we use
 * comment blocks for non-doxygen. */

 Doxygen Comments:
 /// for one liners
 /** main_topic explanation.
 *
 * @NOTE:
 * notes go here.
 */

/** @TODO:
 * need #define directive to omit including headers twice
 */

/// @TODO need #define directive to omit including headers twice

Pointers:
must always be initialized with nullptr if nothing else.
must begin with prefix ‘p_‘.

example:
 char *p_file_name;

NULL vs nullptr:
always use nullptr.

Basic Types

	Name	Type	Size	Value Range

 	bool	Boolean	1 Byte	true or false

 	byte	Unsigned Integer	1 Byte	0 to 255

 	char	Unsigned Unicode Character	2 Bytes	0 to 65,535

 	real	Floating point	4 Bytes	1.7E +/- 308 (15 digits)

 	int	Signed integer	8 Bytes	–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

 	void	Non-value return	0Bits	null

 if
return
continue
friend
goto
try,
delete
typeid,
do
signed
typename
break
sizeof
case
static
unsigned
catch
else
namespace
using
new
virtual
explicit
noexcept
export
switch
extern
operator
template
const
private
this
while
protected
thread_local
for
public
throw
default
typedef
mutable

layout: page
title: “Cx (C code eXecutor)”
date: 2013-11-02 06:39
comments: true
sharing: true
footer: true

A type-safe, interpreted, procedural, object oriented language intended to be a subset of C/C++ syntax. Cx intended use is aimed towards system administrative tasks, and network programmability.

Supported compilers and platforms

Popular compilers which support C++11 are used to build the Cx interpreter.

	clang++

	g++4.7 or later

	VS 2012 express

Cx language features are restricted to the C++11 standard library and will compile on OSX, Linux, and Windows. Any features deemed platform specific will be implemented in dynamic libraries which can be loaded at run-time.

Cx Documentation

	Cx-doc

Status

This project is for educational purposes only and is currently under heavy development.

Getting involved

Fork the repo. All of your changes are to be made on your copy of the repo. Changes to the master branch are done via pull requests.

 Cx expressions design document

[07-30-2013] Ideas for expressions design
The initial design of Cx expressions works well with basic types (int, bool, char).
However, the current design does not take in to account I/O streams. In this
document I/O stream support for expressions will be pondered.

Making expressions stream aware will provide simpler string and I/O operations
to the user.

Operators

Arithmetic

The five arithmetical operations supported by the Cx language are:

	addition

	subtraction

	multiplication
/ division
% modulo

Assignment

The assignment operator assigns a value to a variable.

=

Compound Assignment

When we want to modify the value of a variable by performing an operation on the
value currently stored in that variable we can use compound assignment
operators.

+=
-=
*=
/=
%=

=
<<=
&=
^=
|=

expression is equivalent to
value += increase; value = value + increase;
a -= 5; a = a - 5;
a /= b; a = a / b;
price *= units + 1; price = price * (units + 1);

Increase and Decrease

Shortening even more some expressions, the increase operator (++) and the
decrease operator (–) increase or reduce by one the value stored in a variable.
They are equivalent to +=1 and to -=1, respectively.

++

Relational and Equality

In order to evaluate a comparison between two expressions we can use the
relational and equality operators. The result of a relational operation is a
Boolean value that can only be true or false, according to its Boolean result.

== Equal to
!= Not equal to

Greater than
< Less than
= Greater than or equal to
<= Less than or equal to

Logical

! Operator
Inverse of boolean expression

!(true expression) == false
!(false expression) == true

&& Operator
a b a && b
true true true
true false false
false true false
false false false

|| Operator
a b a || b
true true true
true false true
false true true
false false false

Bitwise

Bitwise operators modify variables considering the bit patterns that represent the values they store.

operator asm equivalent description
& AND Bitwise AND
| OR Bitwise Inclusive OR
^ XOR Bitwise Exclusive OR
~ NOT Unary complement (bit inversion)
<< SHL Shift Left

 SHR Shift Right

layout: page
title: “Cx-operators”
date: 2013-11-02 16:18
comments: true
sharing: true
footer: true

Arithmetic

The five arithmetical operations supported by the Cx language are:

 <no title>

	Keywords

	Operators

	Primitive Types

	Expressions

 Extending the Cx Interpreter

Extending the Cx Interpreter

Minimum Requirements

Extending the language requires a dynamic library to be compiled against libcx. The header file Cx/lib/include/cx_api.h will need to be included in the project also. The library must contain the entry point cx_lib_init for the import directive to be successful.

The entry point of the library will be passed the current scopes symbol table and a array of basic data types that can be used.

Minimum required code for a dynamic library.

#if defined _WIN32
#define LIBRARY_API __declspec(dllexport)
#elif defined __linux__
#define LIBRARY_API extern "C"
#endif

// required entry point for all dynamic libraries
LIBRARY_API
void cx_lib_init(cx_symtab *p_symtab, const cx_type **ct){

}

Define Codes

When defining an identifier you must specify a Define Code. The recognized Define Codes are:

enum cx_define_code {
 dc_undefined, dc_constant, dc_type, dc_variable, dc_member,
 dc_value_parm, dc_reference, dc_pointer, dc_program, dc_function
};

Defining Constants

Declaring a constant must be done by entering the identifier name into the symbol table and setting the data type.

// required entry point for all dynamic libraries
LIBRARY_API
void cx_lib_init(cx_symtab *p_symtab, const cx_type **ct){

 cx_symtab_node *p_eof = p_symtab->enter("EOF", dc_constant); // Enter 'EOF' ID into the table with a define code of constant
 set_type(p_eof->p_type, (cx_type *) ct[cx_int]); // Set data type to an integer
 p_eof->defn.constant.value.int__ = EOF; // Set the constant value

}

Defining Types and Variables

User defined types can be defined just like with file types being defined in stdio. Types are recognized by the define code dc_type

Basic Types

How new types are defined externally. This is an example of defining an integer type named number and a integer variable named num.

// required entry point for all dynamic libraries
LIBRARY_API
void cx_lib_init(cx_symtab *p_symtab, const cx_type **ct){

 // Will allow user to declare a 'number' type.
 cx_symtab_node *p_number_id = p_symtab->enter("number", dc_type);
 set_type(p_number_id->p_type, (cx_type *)ct[cx_int])

 // Will declare a integer variable named 'num'
 cx_symtab_node *p_number_id = p_symtab->enter("num", dc_variable);
 set_type(p_number_id->p_type, (cx_type *)ct[cx_int]);
}

Arrays

Arrays are defined by the form code and are considered a new type.

// required entry point for all dynamic libraries
LIBRARY_API
void cx_lib_init(cx_symtab *p_symtab, const cx_type **ct){

 cx_symtab_node *p_number_id = p_symtab->enter("number", dc_type);

 // creates a new array of size 0
 set_type(p_number_id->p_type, new cx_type(fc_array, 0, p_number_id));

 // set the elements of the array to integer
 set_type(p_number->p_type->array.p_element_type, (cx_type *) ct[cx_int]);

}

Defining Functions

Declaring functions is a little more involved. We must consider the parameters (value or reference) and return type. Also, we must set a pointer to the function we are defining. We are responsible for maintaining the stack and return type.

LIBRARY_API
cx_type *cx_remove(cx_runtime_stack *p_stack,
 cx_symtab_node *cx_function_id,
 const cx_type *p_type) {

 const char *filename = (const char *) p_stack->top()->basic_types.addr__;
 p_stack->pop();

 p_stack->push((bool)(std::remove(filename) == 0));

 return cx_function_id->p_type;
}

LIBRARY_API
void cx_lib_init(cx_symtab *p_symtab, const cx_type **ct){

 // enter symbol
 cx_symtab_node *p_remove = p_symtab->enter("remove", dc_function);

 // declared as standard function
 p_remove->defn.routine.which = func_standard;

 // set return type to boolean
 set_type(p_remove->p_type, (cx_type *) ct[cx_bool]);

 // parameter count
 p_remove->defn.routine.parm_count = 1;

 // char *filename parameter identifier
 p_remove->defn.routine.locals.p_parms_ids = new cx_symtab_node("filename", dc_value_parm);
 set_type(p_remove->defn.routine.locals.p_parms_ids->p_type, new cx_type(fc_array, 0, nullptr));
 p_remove->defn.routine.locals.p_parms_ids->p_type->type_code = cx_address;
 set_type(p_remove->defn.routine.locals.p_parms_ids->p_type->array.p_element_type, (cx_type *) ct[cx_char]);

 // pointer to our function defined above
 p_remove->defn.routine.ext_function = cx_remove;

}

Defining User Types with Members

Defining a user defined type with members is simple, and we just need to enter one ID into the current symbol table then (p_symtab) create a new symbol table for the ID we just created. This is example code of how the file type is defiend followed by defining stdin.

LIBRARY_API
void cx_lib_init(cx_symtab *p_symtab, const cx_type **ct){

 cx_type *p_file_type = nullptr;
 cx_symtab *std_stream_members = nullptr;

 cx_symtab_node *p_file_id = p_symtab->enter("file", dc_type);

 if (!p_file_type) {
 set_type(p_file_type, new cx_type(fc_stream, sizeof (FILE), p_file_id));
 p_file_type->complex.p_class_scope = new cx_symtab;
 std_stream_members = p_file_type->complex.p_class_scope;
 }

 set_type(p_file_id->p_type, p_file_type);

 // allocate stdin
 cx_symtab_node *p_stdin = p_symtab->enter("stdin", ::dc_variable);
 set_type(p_stdin->p_type, p_file_type);
 // just point directly at the real 'stdin'
 p_stdin->defn.io.stream = stdin;

 /* Time to add members to 'file' type. Added members
 * to 'file' will be available to anyinstance of
 * 'file' including 'stdin' */

 // create a 'puts' function
 struct member {
 cx_symtab_node *p_node;
 std::string name;
 std::string symbol_name;
 const cx_type *p_type;
 int num_params;
 ext_call ext_f;
 } members[] = {
 // stream members
 { nullptr, "puts", "cx_puts", ct[cx_bool], 1, cx_puts}};

 for (auto &mbr : members) {
 mbr.p_node = std_stream_members->enter(mbr.name.c_str(), dc_function);

 mbr.p_node->defn.routine.which = func_std_member;
 mbr.p_node->defn.routine.ext_function = mbr.ext_f;
 mbr.p_node->defn.routine.parm_count = mbr.num_params;
 set_type(mbr.p_node->p_type, (cx_type *) mbr.p_type);

 if (mbr.name == "puts") {

 // char *str
 mbr.p_node->defn.routine.locals.p_parms_ids = new cx_symtab_node("str", dc_value_parm);
 mbr.p_node->defn.routine.locals.p_parms_ids->p_type = new cx_type(fc_array, 0,
 mbr.p_node->defn.routine.locals.p_parms_ids);

 set_type(mbr.p_node->defn.routine.locals.p_parms_ids->p_type->array.p_element_type, (cx_type *) ct[cx_char]);

 }
 }
}

 <no title>

 All Cx directives start with the pound # operator

#include filename
Creates a separate parser instance and opens the file for processing. Symbols loaded from the header file will be available within the current scope. This directive will first search for the environment path variable CX_STDLIB, then search the local directory for the header module.

 <no title>

 io - Standard Input/Output

io - Standard Input/Output

Types

file - type, capable of holding all information needed to control a Cx I/O stream

	

Predefined file streams

stdin - type file associated with the input stream

	

stdout - type file associated with the output stream

	

stderr - type file associated with the error output stream

	

Constants

EOF - integer constant expression of type int and negative value

	

FOPEN_MAX - number of files that can be open simultaneously

	

FILENAME_MAX - size needed for an array of char to hold the longest supported file name

	

SEEK_SET - argument to file::seek indicating seeking from beginning of the file

	

SEEK_CUR - argument to file::seek indicating seeking from the current file position

	

SEEK_END - argument to file::seek indicating seeking from end of the file

	

TMP_MAX - maximum number of unique filenames that can be generated by io::tmpnam

	

L_tmpnam - size needed for an array of char to hold the result of io::tmpnam

	

Functions

char putchar(char c)

Writes a character to the standard output (stdout). It is equivalent to calling putc with stdout as second argument.

Parameters

c - character to write to stdout

Return value

ASCII code of character written

Example

char putchar(char c){
 return stdout.putc(c);
}

	

bool puts(char *str)

Writes the copied Cx string str to the standard output (stdout), null-character \0 is not copied to the stream. Appends newline \n to str.

Parameters

str - copied char array to write to stdout

Return value

true on success, false on failure

Example

bool puts(char *str){
 return stdout.puts(str + '\n');
}

	

char getchar(void)

Returns the next character from the standard input (stdin) and echo’s the character to the screen. It is equivalent to calling getc, but getc will not echo the character.

Return value

character read from stdin

Example

char getchar(){
 return stdin.getc;
}

	

char *gets(void)

Reads characters from the standard input (stdin) and stores them as a Cx string into str until a newline character or the end-of-file is reached. The newline character, if found, is not copied into str. A terminating null character is automatically appended after the characters copied to str.

Return value

array of characters read from stdin

Example

char *gets(){
 char *str;
 char c;
 bool condition = false;

 do{
 c = getchar();
 condition = ((c != '\n') && (c != '\r'));
 if(condition)str += c;
 }while(condition);

 return str;
}

	

bool remove(char *filename)

Deletes the file identified by character string pointed to by filename.

Parameters

filename - string containing the path identifying the file to delete

Return value

true on success, false on failure

Note

In POSIX the behavior for file types other than regular files is unspecified.

Example

#include io

int main(){

 if(io::remove("file_name")){
 io::puts("removed file");
 } else {
 io::perror("remove");
 }

 return 0;
}

	

void perror(char *str)

Prints a textual description of the error code currently stored in the system variable errno to stderr.

Parameters

str - string with explanatory message

Example

#include io

int main(){
 io::file myfile;
 char *filename = "somefile";

 if(!myfile.open(filename, "w")){
 io::perror("error opening file: " + filename);
 }

 return 0;
}

	

bool rename(char *old_filename, char *new_filename)

Changes the filename of a file. The file is identified by character string pointed to by old_filename. The new filename is identified by character string pointed to by new_filename.

Parameters

old_filename - string containing the path identifying the file to rename
new_filename - string containing the new path of the file

Return value

true on success, false on failure

Example

#include io

int main(){

 char *filename = "somefile";

 if(!io::rename(filename, "new_file_name")){
 io::perror("unable to rename " + filename);
 } else {
 io::puts("renamed " + filename + " to new_file_name\n");
 }

 return 0;
}

	

char *tmpnam(void)

Creates an unique filename that does not name a currently existing file, and returns it a character string. The function is capable of generating up to TMP_MAX of unique filenames, but some or all of them may already be in use, and thus not suitable return values.

Note

io::tmpnam is not re-entrant and thus not thread-safe.

Return value

character array capable of holding at least L_tmpnam bytes, to be used as a result buffer

Example

#include io

int main(){

 char *filename = io::tmpnam();

 if(!io::rename(filename, "new_file_name")){
 io::perror("unable to rename " + filename);
 } else {
 io::puts("renamed " + filename + " to new_file_name\n");
 }

 return 0;
}

	

io::file members

bool open(char *filename, char *mode)

Opens a file indicated by filename and returns a boolean indicating success or failure. mode is used to determine the file access mode.

Parameters

filename - file name to associate the file stream to
mode - character string determining file access mode

	 File access
mode string

	 Meaning

	 Explanation

	 Action if file
 already exists

	 Action if file
 does not exist

	 "r"

	 read

	 Open a file for reading

	 read from start

	 failure to open

	 "w"

	 write

	 Create a file for writing

	 destroy contents

	 create new

	 "a"

	 append

	 Append to a file

	 write to end

	 create new

	 "r+"

	 read extended

	 Open a file for read/write

	 read from start

	 error

	 "w+"

	 write extended

	 Create a file for read/write

	 destroy contents

	 create new

	 "a+"

	 append extended

	 Open a file for read/write

	 write to end

	 create new

	 File access mode flag "b" can optionally be specified to open a file in binary mode. This flag has effect only on Windows systems.
 On the append file access modes, data is written to the end of the file regardless of the current position of the file position indicator.

Return value

true on success, false on failure

Example

#include io

int main(){
 io::file output;

 // if open fails, print error
 if(!output.open("filename", "w")){
 io::perror("open");
 } else {
 output.puts("Hello, File!");
 output.close();
 }

 return 0;
}

	

bool file::reopen(char *filename, char *mode)

Reassigns an existing file stream to a different file identified by filename using specified mode. mode is used to determine the new file access mode.

Parameters

filename - file name to associate the file stream to
mode - character string determining file access mode

	 File access
mode string

	 Meaning

	 Explanation

	 Action if file
 already exists

	 Action if file
 does not exist

	 "r"

	 read

	 Open a file for reading

	 read from start

	 failure to open

	 "w"

	 write

	 Create a file for writing

	 destroy contents

	 create new

	 "a"

	 append

	 Append to a file

	 write to end

	 create new

	 "r+"

	 read extended

	 Open a file for read/write

	 read from start

	 error

	 "w+"

	 write extended

	 Create a file for read/write

	 destroy contents

	 create new

	 "a+"

	 append extended

	 Open a file for read/write

	 write to end

	 create new

	 File access mode flag "b" can optionally be specified to open a file in binary mode. This flag has effect only on Windows systems.
 On the append file access modes, data is written to the end of the file regardless of the current position of the file position indicator.

Return value

true on success, false on failure

Example

#include io

int main(){
 io::file output;

 // if open fails, print error
 if(!output.open("filename", "w")){
 io::perror("open");
 } else {
 output.close();
 if(!output.reopen("newfilename", "w"))){
 io::perror("reopen");
 } else {
 output.puts("Hello, NewFile!");
 output.close();
 }
 }

 return 0;
}

	

bool file::close(void)

Closes the given file stream. Any unwritten buffered data are flushed to the OS. Any unread buffered data are discarded.

Return value

true on success, false on failure

	

bool file::flush(void)

Synchronizes an output stream with the actual file.

Return value

true on success, false on failure

	

int file::wide(int mode)

Switches a file stream between wide character I/O and narrow character I/O

Parameters

mode - integer value greater than zero to set the stream wide, less than zero to set the stream narrow, or zero to query only

If mode > 0, attempts to make stream wide-oriented. If mode < 0, attempts to make stream byte-oriented. If mode == 0, only queries the current orientation of the stream.

Return value

An integer greater than zero if the stream is wide-oriented after this call, less than zero if the stream is byte-oriented after this call, and zero if the stream has no orientation.

	

byte *file::read(int count, int size)

Reads up to count objects into the array buffer from the given input stream stream as if by calling file::getc size times for each object, and storing the results, in the order obtained, into the successive positions of buffer, which is reinterpreted as an array of byte. The file position indicator for the stream is advanced by the number of characters read.

If the objects are not Trivially Copy-able, the behavior is undefined.

If an error occurs, the resulting value of the file position indicator for the stream is indeterminate. If a partial element is read, its value is indeterminate.

Parameters

size - size of each object in bytes
count - the number of the objects to be read

Return value

Objects read successfully, which may be less than count if an error or end-of-file condition occurs.
If size or count is zero, file::read returns null and performs no other action.

	

int file::write(int count, int size, byte *buffer)

Writes up to count binary objects from the given array buffer to the output stream stream. The objects are written as if by reinterpreting each object as an array of unsigned char and calling io::fputc size times for each object to write those unsigned chars into stream, in order. The file position indicator for the stream is advanced by the number of characters written.

If the objects are not Trivially Copy-able, the behavior is undefined.
If an error occurs, the resulting value of the file position indicator for the stream is indeterminate.

Parameters

buffer - pointer to the first object object in the array to be written
size - size of each object
count - the number of the objects to be written

Return value

Number of objects written successfully, which may be less than count if an error occurred.
If size or count is zero, file::fwrite returns zero and performs no other action.

	

char file::getc(void)

Reads the next character from the given input stream.

Return value

The obtained character on success or io::EOF on failure.

If the failure has been caused by end of file condition, additionally sets the eof indicator (see file::eof()) on stream. If the failure has been caused by some other error, sets the error indicator (see file::error()) on stream.

Example

#include io

int main(){

 io::file input;
 char *filename = "input.txt";

 if(!myfile.open(filename, "r"))
 io::perror("error opening file: " + filename);
 else {
 while(!myfile.eof){
 // this may atually try to print the io::EOF char to stdout
 io::puts(myfile.getc.to_str);
 }
 myfile.close;
 }

 return 0;
}

	

char *file::gets(int count)

Reads at most count - 1 characters from the given file stream and returns it. The produced character string is always null-terminated. Parsing stops if end-of-file occurs or a newline character is found, in which case the returned string will contain that newline character.

Parameters

count - the length of str

Return value

A string on success, null on failure.
If the failure has been caused by end of file condition, additionally sets the eof indicator (see file::eof()) on stdin. If the failure has been caused by some other error, sets the error indicator (see file::error()**) on stdin.

Example

#include io

int main () {

 char *in;

 do{
 io::puts("Please enter your name: ");
 // read string until '\n'
 in = io::stdin.gets();

 // in == null
 }while(!in);

 char *t1 = "beep";
 char *t2 = "-boop";
 char *greet = "Hello " + in + ", you a bad " + t1 + t2 + " !";

 io::puts(greet);

 return 0;
}

	

int file::putc(int ch)

Writes a character ch to the given output stream stream.
Internally, the character is converted to unsigned char just before being written.

Parameters

ch - character to be written

Return value

On success, returns the written character.
On failure, returns io::EOF and sets the error indicator (see file::error()) on io::stdout.

	

bool file::puts(char *str)

Writes given null-terminated character string to the given output stream.

Parameters

str - character string to be written

Return value

true on success, false on failure.

	

int file::ungetc(int ch)

Puts the character ch back to the given file stream.

Parameters

ch - character to be put back

Return value

On success ch is returned.
On failure io::EOF is returned and the given stream remains unchanged.

	

Wide character

wchar file::getwc(void)

Reads the next wide character from the given input stream.

Return value

The next wide character from the stream or io::WEOF if an error has occurred or the end of file has been reached. If an encoding error occurred, errno() is set to EILSEQ.

	

wchar *file::getws(int count)

Reads at most count - 1 wide characters from the given file stream and returns them as a wide string. The produced wide string is always NULL-terminated. Parsing stops if end-of-file occurs or a newline wide character is found, in which case the wide string will contain that wide newline character.

Parameters

count - the length of wide string

Return value

wide string on success null on an error

	

wchar file::putwc(wchar ch)

Writes a wide character ch to the given output stream.

Parameters

ch - wide character to be written

Return value

ch on success, io::WEOF on failure. If an encoding error occurs, errno() is set to EILSEQ.

	

bool file::putws(wchar *wstr)

Writes given null-terminated wide string to the given output stream.

Parameters

wstr - null-terminated wide string to be written

Return value

true on success, false on failure

	

wchar getwchar(void)

Reads the next wide character from io::stdin.

Return value

The obtained wide character or io::WEOF if an error has occurred or the end of file reached

	

wchar putwchar(wchar wc)

Writes a wide character ch to io::stdout

Parameters

ch - wide character to be written

Return value

ch on success, io::WEOF on failure.

	

wchar file::ungetwc(wchar ch)

Puts the wide character ch back to the given file stream. Only one wide character pushback is guaranteed.

Parameters

ch - wide character to be put back

Return value

On success ch is returned.
On failure io::WEOF is returned and the given stream remains unchanged.

	

4/25/2014 4:42:00 PM

 if

if

Conditionally executes code.
Used where code needs to be executed only if some condition is present.

Syntax

	

if (condition) statement_true

	

if (condition) statement_true else statement_false

	

	condition - any expression which is contextually convertible to bool.

	statement_true - any statement often a compound statement, which is executed if condition evaluates to true.

	statement_false - any statement often a compound statement, which is executed if condition evaluates to false

Explanation

If the condition yields true, statement_true is executed.

If the else part of the if statement is present and condition yields false, statement_false is executed.

In the second form of if statement (the one including else), if {{spar|statement_true}} is also an if statement then that inner if statement must contain an else part as well (in other words, in nested if-statements, the else is associated with the closest if that doesn’t have an else)

Notes

If statement_true or statement_false is not a compound statement, it is treated as if it was:

if(x)
 int i;
// i is no longer in scope

// is the same as
if(x) {
 int i;
} // i is no longer in scope

The scope of the name introduced by condition, if it is a declaration, is the same as the scope of the body of the statements:

if (int x = f()) {
 int x; // error: redeclaration of x
}
else {
 int x; // error: redeclaration of x
}

Keywords

if
else

Example

The following example demonstrates several usage cases of the if statement

#include io

int main(){
 // simple if-statement with an else clause
 int i = 2;
 if (i > 2) {
 io::puts(i.to_str + " is greater than 2\n");
 } else {
 io::puts(i.to_str + " is not greater than 2\n");
 }

 // nested if-statement
 int j = 1;
 if (i > 1)
 if(j > 2)
 io::puts(i.to_str + " > 1 and " + j.to_str + " > 2\n");
 else // this else is part of if(j>2), not part of if(i>1)
 io::puts(i.to_str + " > 1 and " + j.to_str + " <= 2\n");

}

output

2 is not greater than 2
2 > 1 and 1 <= 2

 if

if

Conditionally executes code.
Used where code needs to be executed only if some condition is present.

Syntax

	

if (condition) statement_true

	

if (condition) statement_true else statement_false

	

	condition - any expression which is contextually convertible to bool.

	statement_true - any statement often a compound statement, which is executed if condition evaluates to true.

	statement_false - any statement often a compound statement, which is executed if condition evaluates to false

Explanation

If the condition yields true, statement_true is executed.

If the else part of the if statement is present and condition yields false, statement_false is executed.

In the second form of if statement (the one including else), if {{spar|statement_true}} is also an if statement then that inner if statement must contain an else part as well (in other words, in nested if-statements, the else is associated with the closest if that doesn’t have an else)

Notes

If statement_true or statement_false is not a compound statement, it is treated as if it was:

if(x)
 int i;
// i is no longer in scope

// is the same as
if(x) {
 int i;
} // i is no longer in scope

The scope of the name introduced by condition, if it is a declaration, is the same as the scope of the body of the statements:

if (int x = f()) {
 int x; // error: redeclaration of x
}
else {
 int x; // error: redeclaration of x
}

Keywords

if
else

Example

The following example demonstrates several usage cases of the if statement

#include io

int main(){
 // simple if-statement with an else clause
 int i = 2;
 if (i > 2) {
 io::puts(i.to_str + " is greater than 2\n");
 } else {
 io::puts(i.to_str + " is not greater than 2\n");
 }

 // nested if-statement
 int j = 1;
 if (i > 1)
 if(j > 2)
 io::puts(i.to_str + " > 1 and " + j.to_str + " > 2\n");
 else // this else is part of if(j>2), not part of if(i>1)
 io::puts(i.to_str + " > 1 and " + j.to_str + " <= 2\n");

}

output

2 is not greater than 2
2 > 1 and 1 <= 2

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/